説明変数Xを主成分分析(PCA)を行い、その主成分で回帰モデルを構築するのが、主成分回帰(PCR)です。 主成分は、主成分の分散が最大になるように作成され、できるだけ元の説明変数Xのもっている情報量を保持しようとします。...
最適化問題は、マーケティング予算配分の最適化、配送ルートの最適化、スケジュール最適化など、何かを最適化する問題を扱うものです。 最適化問題には、登場する数式や最適解の条件などによって、線形計画問題や非線形計画問題、混合整...
時系列データには複数の季節性を持つ場合があります。 例えば、日単位の時系列データであれば週周期と年周期、時単位の時系列データであれば日周期と週周期などです。 時系列データでよく利用されるモデルは、ARIMA系のモデルです...
VAR(Vector Autoregressive、ベクトル自己回帰)モデルとは、ARモデル(自己回帰モデル)の多変量版です。 VARモデルで、時系列の変数Xと変数Yの間の関係性を検討することができます。 例えば…… グ...
時系列データを分析するとき、時系列データの性質を知るために自己相関と相互相関を求めたりします。 自己相関と相互相関は、通常の数理統計学で登場する相関係数を、単に時系列データに応用したもので、2つの時系列データの類似性を表...
ビジネスの世界では、売上やPV数などの時系列データがたくさんあります。このような時系列データは、いつも完璧なコンディションで存在するわけではありません。 例えば、データの一部が欠損、つまり、欠測値の状態になっていることが...
Pythonユーザの中には、Jupyter上でPythonを使う方も多いことでしょう。 Pythonを使いながらRの便利な関数を利用したい、そう思われる方も多いことでしょう。 Jupyter上でPythonを使いながら、...
売上などの時系列データには、周期性があります。周期性の中で、期間の決まっているものを季節性と言ったりします。 例えば、1日単位の売上データであれば週周期(7日間)や年周期(365.25日間)、1時間単位の気温データであれ...
前回と前々回にベイズ推定について簡単に説明しました。 以下、前回の記事です。 以下、前々回の記事です。 通常の線形回帰モデルは、切片や係数、予測の値は1つです。 一方,ベイズ線形回帰モデルで得られるのは分布です。正確には...
統計解析のフリーの分析ツールと言えば、Rです。 Rの中には、たくさんのサンプのデータセットがあります。 Pythonで使いたい! という方もいることでしょう。 Pythonの統計解析パッケージであるstatsmodels...