多くの人にとって馴染みがあるのは、時系列データ系の数理モデル(アルゴリズム)よりも、テーブルデータ系の数理モデル(アルゴリズム)の方です。 例えば、以下の数理モデル(アルゴリズム)はテーブルデータ系のものです。 線形回帰...
前回までは、時系列データ系の数理モデル(アルゴリズム)で、時系列予測モデルを構築し予測する方法について、説明してきました。前回は、Prophetモデルを扱いました。 Pythonで時系列解析・超入門(その4)Prophe...
ビジネスの世界で発生するデータの多くは、時間的概念の紐付いた時系列データです。 例えば、売上金額や受注件数、販売量、生産量、在庫量、PV(ページビュー)数、見込み顧客数、既存顧客数、離反顧客数、故障件数、広告宣伝費、人件...
前回までは、simpleRNN・LSTM・GTUでモデル構築し1期先予測(1-Step ahead prediction)の方法について説明しました。 以下の記事は、simpleRNNでモデル構築し1期先予測(1-Ste...
Pythonでデータ分析するとき、Jupyter Notebookを使う人は多いことでしょう。 試行錯誤の結果、ほぼ分析の流れが定型化した場合、必要の都度、Jupyter Notebook に記載されたPythonコード...
ビジネスの世界で発生するデータの多くは、時間的概念の紐付いた時系列データです。 例えば、売上金額や受注件数、販売量、生産量、在庫量、PV(ページビュー)数、見込み顧客数、既存顧客数、離反顧客数、故障件数、広告宣伝費、人件...
ビジネスの世界で発生するデータの多くは、時間的概念の紐付いた時系列データです。 例えば、売上金額や受注件数、販売量、生産量、在庫量、PV(ページビュー)数、見込み顧客数、既存顧客数、離反顧客数、故障件数、広告宣伝費、人件...
ビジネスの世界で発生するデータの多くは、時間的概念の紐付いた時系列データです。 例えば、売上金額や受注件数、販売量、生産量、在庫量、PV(ページビュー)数、見込み顧客数、既存顧客数、離反顧客数、故障件数、広告宣伝費、人件...
時系列の深層学習(ディープラーニング)モデルの代表格がRNN(Recurrent Neural Network、リカレントニューラルネットワーク)です。RNNの構築方法と1期先予測(1-Step ahead predic...
時系列の深層学習(ディープラーニング)モデルの代表格がRNN(Recurrent Neural Network、リカレントニューラルネットワーク)です。 RNNの長期記憶が保持できないなどの問題点を改善する形で登場したL...