前回まででH2Oを使う準備が整いました。 H2Oをインストールする(Python編) H2Oをインストールする(R編) いよいよH2OのAutoMLを使ってみましょう。 今回は、「H2OのAutoMLでできること」につい...
H2Oは、PythonやR、その他多数のプラットフォームで動きます。 前回は、H2O AutoML とは何なのか、というお話しをしました。 H2O AutoML とは? 今回は、WindowsのRにH2Oをインストールす...
H2Oは、PythonやR、その他多数のプラットフォームで動きます。 前回は、H2O AutoML とは何なのか、というお話しをしました。 H2O AutoML とは? 今回は、WindowsのPythonにH2Oをイン...
面倒な特徴量エンジニアリングやモデル選択、モデルのパラメータ調整などを全自動で実施してくれるAutoML(自動機械学習)が最近発達してきています。 自動機械学習(AutoML) Web講座の前シリーズでは、主にPytho...
TPOTは、最適な機械学習の一連の流れ(パイプライン)を自動で構築する自動機械学習(AutoML)です。 では、どのようにして最適なパイプラインを得るのでしょうか? あらゆるパイプラインの構築パターンを試せば、最適なパイ...
前回、精度やメモリ使用量、実行速度に応じたTPOTが用意した構成(Config.)を使う方法を説明しました。 構成名 内容 適用できる問題 Default TPOT 初期設定の構成です。 分類・回帰 TPOT light...
TPOTでは、あらかじめパイプラインに使う変換器やアルゴリズム、探索するパラメータの範囲が決まっています。 しかし、あまり探索に時間をかけたくないときや単純な変換器・アルゴリズムを使いたいときがあると思います。 逆に時間...
スタッキングは機械学習のアンサンブル学習の一つです。複数の学習器の出力を特徴量とし、さらに別の学習器で予測する方法です。 TPOTのスタッキングは、指定のアルゴリズムで予測した結果とそのアルゴリズムに入力した特徴量を組み...
スタッキングは機械学習のアンサンブル学習の一つです。複数の学習器の出力を特徴量とし、さらに別の学習器で予測する方法です。 TPOTのスタッキングは、指定のアルゴリズムで予測した結果とそのアルゴリズムに入力した特徴量を組み...
第9回「AutoML【TPOT】のパイプラインに使われる関数一覧」で、TPOTのパイプライン(特徴量生成・予測)で使われる関数の概要を説明しました。 その中には、TPOT独自の関数がいくつかありました。 分類問題・回帰問...