前回、精度やメモリ使用量、実行速度に応じたTPOTが用意した構成(Config.)を使う方法を説明しました。 構成名 内容 適用できる問題 Default TPOT 初期設定の構成です。 分類・回帰 TPOT light...
TPOTでは、あらかじめパイプラインに使う変換器やアルゴリズム、探索するパラメータの範囲が決まっています。 しかし、あまり探索に時間をかけたくないときや単純な変換器・アルゴリズムを使いたいときがあると思います。 逆に時間...
BI(ビジネスインテリジェンス)ツールで先ずすべきは、外部にあるデータの読み込み(データ取得)です。 前回は、Web上のデータを取得する方法と簡単なデータ加工について説明しました。 Web上にあるデータを取り込んだら、加...
BI(ビジネスインテリジェンス)ツールで先ずすべきは、外部にあるデータの読み込み(データ取得)です。 前回は、複数のCSVデータを取得し結合するやり方について説明しました。 最近は、ExcelやCSVファイル、データベー...
BI(ビジネスインテリジェンス)ツールで先ずすべきは、外部にあるデータの読み込み(データ取得)です。 前回は、データベース「PostgreSQL」のデータ取得について説明しました。 読み込むデータは、Excelファイルで...
スタッキングは機械学習のアンサンブル学習の一つです。複数の学習器の出力を特徴量とし、さらに別の学習器で予測する方法です。 TPOTのスタッキングは、指定のアルゴリズムで予測した結果とそのアルゴリズムに入力した特徴量を組み...
スタッキングは機械学習のアンサンブル学習の一つです。複数の学習器の出力を特徴量とし、さらに別の学習器で予測する方法です。 TPOTのスタッキングは、指定のアルゴリズムで予測した結果とそのアルゴリズムに入力した特徴量を組み...
第9回「AutoML【TPOT】のパイプラインに使われる関数一覧」で、TPOTのパイプライン(特徴量生成・予測)で使われる関数の概要を説明しました。 その中には、TPOT独自の関数がいくつかありました。 分類問題・回帰問...
第9回「AutoML【TPOT】のパイプラインに使われる関数一覧」で、TPOTのパイプライン(特徴量生成・予測)で使われる関数の概要を説明しました。 その中には、TPOT独自の関数がいくつかありました。 分類問題・回帰問...
前回、パイプラインの評価指標を一覧にしました。 実際にTPOTを使うときに、使いたい評価指標が実装されていないこともあると思います。 例えば回帰問題でよく使われるRMSE(Root Mean Squared Error、...