第68話|誰に何が売れているのかが分かっても、売上分析は「なぜ」までは分からない。では、どうする?

第68話|誰に何が売れているのかが分かっても、売上分析は「なぜ」までは分からない。では、どうする?

CRMデータや購買履歴データ、取引履歴データなどの、誰が何を購入したのかを記録したデータは、多くの企業の社内に眠っています。

売上分析(もしくは、顧客分析)をするとき、多くの人が最初にするのが、売上の推移を知ること。折れ線グラフで表現したり、棒グラフで表したりする。

その後実施するのが、誰が何を購入したのかを知るための分析。施策に繋がりやすいため、その傾向を知っておくことは重要です。

しかし、「なぜ」という問の答えを、データは語りません。しかし、この「なぜ」という問の答えが無いと、施策に繋がりにくい。

往々にして、データは行動の結果(今回の場合では「購入」したモノ)までしかわからず、その胸の内は知る由もありません。では、どうすればよいのか?

データは世の中のほんの一部分にすぎない

当然ではありますが、データは世の中のほんの一部分を切り取ったものです。世の中すべてを網羅しているわけではありません。

ビッグデータに象徴されるように、データ量などは近年爆発的に増えました。それでも、この世の中のほとんどはデータ化されていないことでしょう。

データやその分析結果から、何かを語るとき、人はどうしているのでしょうか。

単に得られたデータやその分析結果だけから語るのではなく、データで得られていない何かの情報や知識と結び付けて語っていることでしょう。

例えば、営業活動である業界Aに対し商材Bが飛ぶように売れたとしても、「なぜ」売れたのまでは分からない。データから分かることは、業界Aの見込み顧客の商材Bの受注率が非常に高いということだけ。その理由まではデータは語ってくれません。

この購入した理由が分かると、有効な施策につなげやすくなります。

例えば、製品開発でその部分をさらにより良いものにするとか、プロモーションを打つときの謳い文句にするとか、営業トークのスクリプトの中に混ぜるとか、商品紹介のリーフレットに目立つように記載するとか……

データだけで何んとなかるほど甘くはない

購入し理由が分かれば非常に嬉しいのですが、残念ながらデータだけからその理由を知ることはできません。

その理由を知るために、BtoC企業(一般消費者を相手の企業)では、消費者アンケートやグループインタビューなどを実施し、その理由をさぐるための情報収集をしたりするぐらいです。

要するに、CRMデータや購買履歴データ、取引履歴データなどの、誰が何を購入したのかを記録したデータから、「なぜ」という理由までは分からないということです。

売上分析をいくら実施しても、「なぜ」までは分からない。どこかで、データに頼らずに、「なぜ」を知るための作業が必要になります。

聞くのが一番早い

先ほど述べたように、BtoC企業(一般消費者を相手の企業)では、消費者アンケートやグループインタビューなどを実施し、その理由をさぐるための情報収集をしたりします。

BtoB企業(法人を相手の企業)では、顧客と接している営業パーソンや販売員にヒアリングするのが良いでしょう。顧客に聞きに行っても良いでしょう。

要するに、聞くということです。

しかし、聞いてみたからおと言って、それが真実とは限りません。説明しやすい理由を言っているだけかもしれません。そもそも、購入した理由を忘れているかもしれません。

でも、CRMデータや購買履歴データ、取引履歴データなどの、誰が何を購入したのかを記録したデータ以上のことが、伺い知れます。

観察力と洞察力で突破しよう!

データやその分析結果を読み解くとき、非常に重要な2つのスキルがあります。

観察力と洞察力です。

観察力とは、得られているデータやその分析結果を正しく見る力です。

結果を捻じ曲げず、どんなに不都合なことであっても、素直に受け入れありのままに見る、目に見えることを正しく見る力です。

先ほど述べましたように、データで分かることは、世の中のほんの一部分でしかありません。どちらかというと、世の中はデータ化されていないことのほうが多いことでしょう。

つまり、データで得られていることだけで物事を決めつけるのは早計です。

ではどうすればよいのでしょうか。

そこで求められるのが洞察力です。目に見えないことを見抜く力です。

まとめると、観察力でデータから分かることをありのまま見る。そして、洞察力でデータから見えてきたことをフックに、データからは見えてこないことを見抜く。

この観察力と洞察力のコラボレーションで、CRMデータや購買履歴データ、取引履歴データなどの、誰が何を購入したのかを記録したデータ以上のこと、つまり購入した理由を考えていきます。

とは言え、絶対に正しいとは言えない。検証というスタンスをもとう

観察力と洞察力のコラボレーションで掴んだ購入理由が、本当に正しいのかどうかは分かりません。そのため、検証というスタンスが必要になります。

何をするのかと言いますと、観察力と洞察力のコラボレーションで掴んだ購入理由を正しいと想定し、その上で施策をいくつか考えていきます。そして、実際のどうなるのかを見ていきます。

これが検証です。

このとき、正しいと想定した理由が間違っているのか、施策が良くなかったのかを、区別して判断する必要があります。

もう一つあります。たまたま良かったということもあります。つまり、正しいと想定した理由が間違っていたのに、その理由から考えると的外れな施策を実施したら、たまたま良い方向にいったというまぐれ当たりです。

上手くいかないときだけでなく、上手くいったときも、検証結果を十分に考え抜く必要が出てきます。

今回のまとめ

今回は、「誰に何が売れているのかが分かっても、売上分析は『なぜ』までは分からない」というお話しをしました。

当たり前だろう! と思われる方もいるかもしれませんが、売上分析そのものにのめり込むと、データだけで何んとかしようと、深みにはまっていくことがあります。

よくあるのが、クロス集計などを延々と実施する、やたらとグラフをたくさん作る、というものです。そのうち、統計モデルや機械学習モデルなどを使って、高度な分析を始めたりします。

ビッグデータの時代と言われていますが、まだまだデータは世の中のほんの一部分を切り取ったもので、世の中すべてを網羅しているわけではありません。この世の中のほとんどはデータ化されていない。

では、どうすればよいのでしょうか?

結局のところ、人間の頭脳に頼る、つありブレインワークをする必要があります。データ化されていない情報や知識、経験などと売上分析の結果を結合し、物事を見通します。

そのためのスキルが、観察力と洞察力です。

この2つのスキルのコラボレーションが、売上分析は「なぜ」に答えをもたらすキーになります。

昨今AI(人工知能)ブームですが、この辺りは現状のAI(人工知能)ではまだまだ無理でしょう。人間だからこそできることだと思います。