多くの人は、普段から何かしらの数値を眺めているかと思います。
成績表やTOEICの点数、体重、売上、受注件数、リード件数、PV(ページビュー)数などなど。
普段見ている数値(売上やPVなどの指標)に異常があった場合、あなたはどのようにその要因を探っていますか?
今回は、「データから根本原因を考えるフレームワーク」というお話しをします。
Contents
3つのポイント
データから根本原因を考えるときのポイントです。
- なぜなぜ分析
- 関係性の確認
- 変化の確認
「なぜなぜ分析」とは、「なぜ、そうなるのか?」と問題を深掘りし要因追及する(ツリーが出来上がる)定性分析です。
「関係性の確認」とは、ツリー構造の中で関係性が明白でない部分をデータで確認する定量分析です。
「変化の確認」とは、関係性のある項目が連動して変化しているのかをデータで確認する定量分析です。
どういったものなのかを、事例を使って説明します。
某小売店の例
ある小売店です。
ある週の売上(週販)が急激に落ちました。
なぜでしょうか?
なぜなぜ分析で要因追及(その1)
「先週の売上が大きく落ちた」…… なぜでしょうか?
次のような仮説を立てました。
- 客数が少なかったから
- 客単が落ちたから
「売上=客数×客単」と関係性が明白のため、データで確認する必要はありません。
「客数」と「客単」のどちらが「売上」と連動し変化しているかを、データで確認してみます。
変化しているかデータで確認(その1)
データで確認してみたら、連動し変化したのは「客数」であることが分かりました。
週販が減ったのは、客数が減ったからであることが分かりました。
なぜなぜ分析で要因追及(その2)
「先週の客数が大きく落ちた」…… なぜでしょうか?
次のような仮説を立てました。
- 雨の影響で客足が遠のいたから
- 寒くて外出が控えたから
- チラシ枚数を減らしたから
- 値引き率が低かったからだ
「客数」と「降雨量」「気温」「チラシ枚数」「値引率」の関係性が明白でないので、データで確認する必要があります。
関係性をデータで確認
関係性は、過去データに対し相関分析や回帰分析などで実施するのが最も簡単です。
出来るだけ、関係性はグラフ化するなどし目で確認しましょう。
例えば、客数と降雨量の散布図を描き、降雨量によって客数が増加するのか減少するのか変化しないのかを目で確認します。さらに、回帰系のモデル(単回帰モデルなど)構築し関係性を定式化したり関係性に対し統計的仮設検定を実施しその有無を検討するのもいいでしょう。
関係性のある項目に絞った結果
この小売店のケースでは、客数と関連性のたったのは以下の3項目でした。
- 降雨量
- チラシ枚数
- 値引率
「降雨量」「チラシ枚数」「値引率」のどれが「客数」と連動し変化しているかデータで確認してみます。
変化しているかデータで確認(その2)
データで確認してみたら、連動し変化したのは「降雨量」と「チラシ枚数」であることが分かりました。
客数が減ったのは、チラシ枚数を減らした週に大雨が降ったからであることが分かりました。
今後、どのようなアクションをとればいいのでしょうか?
要因追及したら解決策を考えよう!
要因を特定した後に、解決策を考える必要があります。
以下は、解決策を考えるときの3つのポイントです。
- どうする分析
- 未来分析
- レコメンド
「どうする分析」とは、解決すべき要因に対し「で、どうする?」と実行可能な解決策を案出する(ツリーが出来上がる)定性分析です。
「未来分析」とは、解決策を実施するとどうなるか評価する定量分析です。
「レコメンド」とは、未来分析の結果からどの解決策が良いのかを提言するための意思決定のための分析(定性かつ定量)です。
詳細は、別の機会にお話しします。
今回のまとめ
今回は、「データから根本原因を考えるフレームワーク」というお話しをしました。
普段見ている数値(売上やPVなどの指標)に異常があった場合、あなたはどのようにその要因を探っていますか?
データから根本原因を考えるときのポイントが3つあります。
- なぜなぜ分析
- 関係性の確認
- 変化の確認
「なぜなぜ分析」とは、「なぜ、そうなるのか?」と問題を深掘りし要因追及する(ツリーが出来上がる)定性分析です。
「関係性の確認」とは、ツリー構造の中で関係性が明白でない部分をデータで確認する定量分析です。
「変化の確認」とは、関係性のある項目が連動して変化しているのかをデータで確認する定量分析です。
定性分析(ロジカルシンキング)×定量分析(集計と相関分析など)といった感じです。
非常に簡単に実施することができますので、普段見ている数値(売上やPVなどの指標)に異常があった場合、試してみてください。