Screenshot

土曜日 PM 開催 1/18,2/8 全2回
Pythonで学ぶ「ビジネス時系列分析」
超入門

ビジネス現場の典型的な時系列データである売上データを使った需要予測モデルと異常検知モデルの具体的な作り方と活用方法を公開! 本講座では、Pythonを用いて典的なARIMAモデルからディープラーニングまで扱います。需要や離反、故障などの近未来予測など興味のある方におすすめです。
Screenshot

土曜日 PM 開催 3/1,3/22 全2回
Pythonで学ぶ「機械学習を使った ビジネス因果推論」
超入門

ビジネスの意思決定を変革する「因果推論」の力をPythonを使って実践的に学んでみませんか? 本講座では、Pythonを用いて因果推論の基礎から応用までを実践的に学びます。ケーススタディを通して、マーケティングや価格戦略への活用方法を探ります。データ活用に携わる方におすすめです。
Screenshot

【個人向け養成講座】(プログラミング不要)
企業事例で学ぶ らくらく ノーコード ビジネスデータサイエンス 入門

【開催日時】 全5回(土)2025/3/15, 4/5, 4/26, 5/17, 6/7(13:30〜18:00)
【受講形式】 当日Zoom( or 復習用に後日動画視聴)
【参加費用】 8万円(税込み)/人
【利用ツール】Excel・ノーコードR・ノーコード機械学習H2O・生成AI系分析ツールなど

RECENT ARTICLES

PythonのAutoFeatを使った自動特徴量エンジニアリング<br>(Automatic Feature Engineering)その2(分類問題)

PythonのAutoFeatを使った自動特徴量エンジニアリング
(Automatic Feature Engineering)その2(分類問題)

数理モデルを作る上で特徴量エンジニアリング(Feature Engineering)は地味に重要です。 例えば、より精度の高い予測モデルを構築したいのであれば、アルゴリズムのパラメータチューニングとともに特徴量エンジニア...
PythonのAutoFeatを使った自動特徴量エンジニアリング<br>(Automatic Feature Engineering)その1(回帰問題)

PythonのAutoFeatを使った自動特徴量エンジニアリング
(Automatic Feature Engineering)その1(回帰問題)

数理モデルを作る上で特徴量エンジニアリング(Feature Engineering)は地味に重要です。 例えば、より精度の高い予測モデルを構築したいのであれば、アルゴリズムのパラメータチューニングとともに特徴量エンジニア...
STEP 3(分析)その3-3|散布図+α(相関・回帰線)の話題<br>– 古くて新しいQC7つ道具 –

STEP 3(分析)その3-3|散布図+α(相関・回帰線)の話題
– 古くて新しいQC7つ道具 –

データを集めたら、次にデータを分析しなければなりません。 集めたデータと分析の関係は、食材と料理の関係に似ています。良い食材であっても料理人の腕に問題があると台無しになることがあります。不十分な食材でも調理しだいで美味し...
STEP 3(分析)その3-2|ヒストグラム・管理図・散布図<br>– 古くて新しいQC7つ道具 –

STEP 3(分析)その3-2|ヒストグラム・管理図・散布図
– 古くて新しいQC7つ道具 –

データを集めたら、次にデータを分析しなければなりません。 集めたデータと分析の関係は、食材と料理の関係に似ています。良い食材であっても料理人の腕に問題があると台無しになることがあります。不十分な食材でも調理しだいで美味し...
STEP 3(分析)その3-1|QC7つ道具の概要<br>– 古くて新しいQC7つ道具 –

STEP 3(分析)その3-1|QC7つ道具の概要
– 古くて新しいQC7つ道具 –

データを集めたら、次にデータを分析しなければなりません。 集めたデータと分析の関係は、食材と料理の関係に似ています。良い食材であっても料理人の腕に問題があると台無しになることがあります。不十分な食材でも調理しだいで美味し...