Screenshot

土曜日 PM 開催 1/18,2/8 全2回
Pythonで学ぶ「ビジネス時系列分析」
超入門

ビジネス現場の典型的な時系列データである売上データを使った需要予測モデルと異常検知モデルの具体的な作り方と活用方法を公開! 本講座では、Pythonを用いて典的なARIMAモデルからディープラーニングまで扱います。需要や離反、故障などの近未来予測など興味のある方におすすめです。
Screenshot

土曜日 PM 開催 3/1,3/22 全2回
Pythonで学ぶ「機械学習を使った ビジネス因果推論」
超入門

ビジネスの意思決定を変革する「因果推論」の力をPythonを使って実践的に学んでみませんか? 本講座では、Pythonを用いて因果推論の基礎から応用までを実践的に学びます。ケーススタディを通して、マーケティングや価格戦略への活用方法を探ります。データ活用に携わる方におすすめです。
Screenshot

【個人向け養成講座】(プログラミング不要)
企業事例で学ぶ らくらく ノーコード ビジネスデータサイエンス 入門

【開催日時】 全5回(土)2025/3/15, 4/5, 4/26, 5/17, 6/7(13:30〜18:00)
【受講形式】 当日Zoom( or 復習用に後日動画視聴)
【参加費用】 8万円(税込み)/人
【利用ツール】Excel・ノーコードR・ノーコード機械学習H2O・生成AI系分析ツールなど

RECENT ARTICLES

第217話|需要予測をして何がうれしいの?

第217話|需要予測をして何がうれしいの?

コロナ禍で分かったのは、状況に対する適応力が必要ということです。 変化する状況に対し、柔軟な在庫や人員配置などが求められることでしょう。とは言え、今日明日にいきなり在庫や人員を調整することは無理です。 その中で求められる...
Pythonでサクッと作れる時系列の予測モデルNeuralProphet<br>(≒FacebookのProphet × Deep Learning)

Pythonでサクッと作れる時系列の予測モデルNeuralProphet
(≒FacebookのProphet × Deep Learning)

時系列データを手にしたとき、どのようなデータなのか外れ値や変化点を眺めるのもいいですが、やっぱり予測をしたくなります。 時系列解析のモデルと聞くと難しそうなイメージがあるますが、正直イメージ通りです。 そのような中、あま...
(Python編) 時系列データをサクッとSTLでトレンド・季節性に分解

(Python編) 時系列データをサクッとSTLでトレンド・季節性に分解

幸か不幸か、ビジネス系のデータの多くは時系列データです。売上データもホームーページのアクセスログもセンサーデータも時系列データです。 時系列データを手にしたとき、どのようなデータなのか見てみたい、ということは多々あります...
第214話|時系列データを使った3つのデータ活用

第214話|時系列データを使った3つのデータ活用

ビジネス活動でよく目にするのが、時系列データです。 この時系列データを使ったデータ分析・活用(データサイエンス実践)には、いくつかの種類があります。 時系列の異常検知 時系列の分類 時系列の予測 他にもありかもしれません...