学んだこと、活かせていますか? ビジネスで、データ分析をやることになったとき、あなたならどうするでしょうか。 多くの人は、分析手法の知識や分析ツールの使い方を習得しようとします。 データ分析をするのだから、当然と言えば当...
同じファクト(事実)でも、そこから導き出される何かが、人によって異なります。 データ分析をしていると、このようなことは、よく起こります。 同じデータ分析結果に対し、どのように調理し味付けし、そしてアクションにつなげるのか...
データを分析することで、例えば次の2種類の情報を得ることができます。 レコメンド情報 モニタリング情報 レコメンド情報とは、どのようなアクションなどをすべきか、という情報です。 モニタリング情報とは、アクションした結果ど...
状況が読めないときほど情報を収集し、適切な状況判断のもと意思決定をし、状況の変化とともに柔軟に対応していくことが、求められることでしょう。 思惑や願望ではどうにもならないことも多いです。 ここ数カ月の新コロナ騒動などその...
データ分析なり予測モデル構築をするとき、今までの傾向がこれからも続く、という前提で実施している人が多い気がします。 例えば、昨年の同時期に売れた商品と、今年の同時期の売れる商品はほぼ同じであろう、と推測する感じです。 例...
データを使った災害予測は非常に難しいです。特に、自然現象が相手の天災は、データが揃わないという理由で、非常に難しいです。 ここ数カ月の新型コロナウイルスがそれに該当することでしょう。 例えば、1年前にこのような新型コロナ...
昨今の、新コロナウイルスという不測の事態により、先が見えない状況が続いています。 サイコロやじゃんけんと異なり、今後どうなるか分からないときの意思決定に、ゲーム理論を活用したデータ分析・活用をすることが多々あります。 今...
データを使いモノゴトを改善し続けよう! という動きは、昔からあります。 有名なところでは、生産現場のSQC(統計的品質管理)活動です。 「統計的」という枕詞が付いている通り、データを集め分析し品質を高めるための改善活動を...
最近、社内でデータ活用を推進しようということで、データサイエンス人財を社内に抱えようという動きがあります。 社内でデータ活用するぞ! となったとき、ある壁にぶち当たることがあります。 実業務の壁です。 もう少し説明すると...
データを活用し何かしようという取り組みは、10年前と比べると、かなり増えています。 それが…… ビッグデータだの AI(人工知能)だの データサイエンスだの 機械学習(マシーンラーニング)だの DX(デジタルトランスフォ...
蓄積され続けてはいるけど、人手にあまり触れられていないデータの中には、データの粒度がバラバラなケースが多々あります。 そのようなデータを相手に集計や分析をするとき、非常に苦労します。 ちなみに、データの粒度とは、文字通り...
データを使うことに不慣れな組織や人の場合、データから導き出された結果に対し極端な反応をします。 あり得ない期待を抱くか、もしくは無関心(期待0)か、のどちらかです。 なぜ両極端に振れるのか分かりませんが、その振れ具合が最...
よくデータ分析などを実施する前、「データから今までにない気付きを得られるのではないか!」と期待されることがあります。 要は、データマイニング的なデータ分析です。 しかし、不思議なことに、データから今までにない気付きが発見...
KKD(経験・勘・度胸)を悪の根源とみなし、データ分析・活用で排除するぞ!と 意気込む風景を何度か目にしました。 「データ分析・活用」のところを、「データサイエンス」や「データマイニング」、「マシーンラーニング」、「AI...
データサイエンス実践(データ分析・活用)の成否を左右するのは、テーマ選定にあります。 理由は単純です。 上手くいきそうもないことをいくら頑張っても、上手くいかないからです。 例えば、あなたが陸上選手だとします。 「3ヶ月...
データサイエンティスト(DS)という名の職業が、定着しつつあります。 しかし、その期待されることも、求められることも、定義も微妙に、企業や組織によって変わってきます。 とは言え、データサイエンティスト(DS)に限りません...